Multi-Way, Multi-View Learning

نویسندگان

  • Ilkka Huopaniemi
  • Tommi Suvitaival
  • Janne Nikkilä
  • Matej Orešič
  • Samuel Kaski
چکیده

We extend multi-way, multivariate ANOVA-type analysis to cases where one covariate is the view, with features of each view coming from different, highdimensional domains. The different views are assumed to be connected by having paired samples; this is common in our main application, biological experiments integrating data from different sources. Such experiments typically also include a controlled multi-way experimental setup where disease status, medical treatment groups, gender and time of the measurement are usual covariates. We introduce a multi-way latent variable model for this new task, by extending the generative model of Bayesian canonical correlation analysis (CCA) both to take multi-way covariate information into account as population priors, and by reducing the dimensionality by an integrated factor analysis that assumes the features to come in correlated groups.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-task and multi-view learning of user state

Several computational approaches have been proposed for inferring the affective state of the user, motivated for example by the goal of building improved interfaces that can adapt to the user’s needs and internal state. While fairly good results have been obtained for inferring the user state under highly controlled conditions, a considerable amount of work remains to be done for learning high-...

متن کامل

Multi-view Metric Learning in Vector-valued Kernel Spaces

We consider the problem of metric learning for multi-view data and present a novel method for learning within-view as well as betweenview metrics in vector-valued kernel spaces, as a way to capture multi-modal structure of the data. We formulate two convex optimization problems to jointly learn the metric and the classifier or regressor in kernel feature spaces. An iterative three-step multi-vi...

متن کامل

MMDT: Multi-Objective Memetic Rule Learning from Decision Tree

In this article, a Multi-Objective Memetic Algorithm (MA) for rule learning is proposed. Prediction accuracy and interpretation are two measures that conflict with each other. In this approach, we consider accuracy and interpretation of rules sets. Additionally, individual classifiers face other problems such as huge sizes, high dimensionality and imbalance classes’ distribution data sets. This...

متن کامل

Learning from Multi-View Multi-Way Data via Structural Factorization Machines

Real-world relations among entities can o‰en be observed and determined by different perspectives/views. For example, the decision made by a user on whether to adopt an item relies on multiple aspects such as the contextual information of the decision, the item’s aŠributes, the user’s profile and the reviews given by other users. Different views may exhibit multi-way interactions among entities...

متن کامل

A novel ensemble construction method for multi-view data using random cross-view correlation between within-class examples

Correlated information between multiple views can provide useful information for building robust classifiers. One way to extract correlated features from different views is using canonical correlation analysis (CCA). However, CCA is an unsupervised method and can not preserve discriminant information in feature extraction. In this paper, we first incorporate discriminant information into CCA by...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009